Solving Problems by Search

In which we see how an agent can find a sequence of actions that achieves its goals
when no single action will do.

What do we want?
- Automatically solve a problem.
What do we need?
- Arepresentation of the problem.
- Algorithms that use some strategy to solve the problem.

Problem Representation: In general,

- State Space: A problem is divided into a set of resolution steps from the initial
state to the goal state.
- Reduction to Sub-Problems: A problem is arranged into a hierarchy of sub-
problems.
A State can be defined as a representation of problem elements in a given moment.
Two special states are defined:
- Initial State (Starting Point).
- Final State (Goal State).
A State Space can be defined as all the states that are reachable from the initial state.
A Path is a sequence of states connected by a sequence of actions.

A Solutions is the path from the initial state to the final state.

Problem Description: When we want to describe a problem, we should specify the
following elements:

- State Space.

- Initial State.

- Goal State.

- Available Actions. Or operators to change state.
- Restrictions: like Cost.

- Type of Solution:

- Sequence of goal state.
- One optimal solution.

Example 1: The 8-puzzle Problem As shown in the figure below, it consists of a 3 X3
board with eight numbered tiles and a blank space.

7 2 4 I 2

5 6 3 4 5

8 3 | 6 7 8
Initial State Goal State

- Problem Description:
State Space: Configuration of the eight tiles on the board.
Initial State: Any configuration.
Goal State: Tiles in a specific order.
Operators: blank moves Left, Right, Up, Down.

Solution: Optimal sequence of operators.

Example 2: Travelling from Arad to Bucharest

[] Oradea

Neamt

Fagaras

Urziceni

Craiova Eforie

[Giurgiu

- Problem Description:
State Space: Various cities.
Initial State: Arad.
Goal State: Be in Bucharest.
Operators: Drive between cities.

Solution: Sequence of Cities.

- In order to solve this problem, we can use Tree Search Algorithms. Hence,

successors of the states that haven’t been explored are generated.

function TREE-SEARCH (problem, strategy)
returns a solution, or failure

initialize the frontier using the initial state of problem
loop do

if the frontier is empty then return failure

choose a leaf node and remove it from the frontier

if the node contains a goal state

then return the corresponding solution

expand the chosen node and add the resulting nodes to the frontier

end

Step 1:

Step 2:

Step 3:

Aiad

S Cimisoard) Cerind

Cvad > Crogaras) Clradea) o

Search Algorithms: There are many search algorithms. The following are widely used to
solve Al problems.

- Breadth-First Search.

- Depth-First Search.

- Uniform-Cost Search.

- Depth-limited search.

- Iterative deepening search.
- Bidirectional search.

We will focus on the first two algorithms.

Breadth-First Search: is a simple strategy in which the root node is expanded first, then

all the SEARCH
successors of the root node are expanded next, then their successors, and so on.

- At each stage, the node to be expanded is indicated by a marker.
- The nodes that are already explored are gray.
- The nodes with dashed lines are not generated yet.

function BREADTH-FIRST-SEARCH(problem) returns a solution, or failure

node < a node with STATE = problem.INITIAL-STATE, PATH-COST =0
if problem.GOAL-TEST(node.STATE) then return SOLUTION(node)
frontier — a FIFO queue with node as the only element
explored — an empty set
loop do
it EMPTY?(frontier) then return failure
node — POP(frontier) /* chooses the shallowest node in frontier */
add node.STATE to drplored
for each action in problem.ACTIONS(node.STATE) do
child — CHILD-NODE(problem, node, action)
if child STATE is not in explored or frontier then
if problem .GOAL-TEST(child.STATE) then return SOLUTION(child)
frontier — INSERT(child, frontier)

Example:

>®

® ©® p)O ® ® ©

Depth-First Search: always expands the deepest node in the current frontier of the search
tree.

@

de
n
P

z}/“}?}}
NPT

